Samsung e·MMC Product family e.MMC 4.41 Specification compatibility # datasheet SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. © 2014 Samsung Electronics Co., Ltd. All rights reserved. Rev. 1.0 e·MMC # datasheet KLM4G1YE4C-B0020YB ## **Revision History** Revision No. History Draft Date Remark Editor 1.0 1. Customer Sample May. 19, 2014 Final S.M.Lee # datasheet ## KLM4G1YE4C-B0020YB ## Table Of Contents | 1.0 PRODUCT LIST | 4 | |--|--------| | 2.0 KEY FEATURES | 4 | | 3.0 PACKAGE CONFIGURATIONS 3.1 153 Ball Pin Configuration 3.1.1 11.5mm x 13mm x 1.0mm Package Dimension 3.2 Product Architecture | 5
6 | | 4.0 e.MMC 4.41 features 4.1 Data Write 4.2 Reliable Write 4.3 Secure Trim 4.4 High Priority Interrupt 4.5 Background Operation | | | 5.0 Technical Notes 5.1 S/W Agorithm 5.1.1 Partition Management 5.1.1.1 Boot Area Partition and RPMB Area Partition 5.1.1.2 Enhanced Partition (Area) 5.1.2 Write protect management 5.1.2.1 User Area Write Protection 5.1.2.2 Boot Partition Write Protection 5.1.3 Boot operation 5.1.4 User Density 5.1.5 Auto Power Saving Mode 5.1.6 Performance | | | 6.0 REGISTER VALUE 6.1 OCR Register 6.2 CID Register 6.2.1 Product name table (In CID Register) 6.3 CSD Register 6.4 Extended CSD Register | | | 7.0 AC PARAMETER. 7.1 Time Parameter | | | 8.0 DC PARAMETER 8.1 Active Power Consumption during operation 8.2 Standby Power Consumption in auto power saving mode and standby state 8.3 Sleep Power Consumption in Sleep State 8.4 Supply Voltage 8.5 Bus Operating Conditions 8.6 Bus Signal Line Load | | | 9.0 e·MMC Connection Guide 9.1 x8 support Host connection Guide 9.2 x4 support Host connection Guide | 28 | #### INTRODUCTION The SAMSUNG e·MMC is an embedded MMC solution designed in a BGA package form. e·MMC operation is identical to a MMC card and therefore is a simple read and write to memory using MMC protocol v4.41 which is a industry standard. e·MMC consists of NAND flash and a MMC controller. 3V supply voltage is required for the NAND area (VDDF) whereas 1.8V or 3V dual supply voltage (VDD) is supported for the MMC controller. Maximum MMC interface frequency of 52MHz and maximum bus widths of 8 bit are supported. There are several advantages of using e·MMC. It is easy to use as the MMC interface allows easy integration with any microprocessor with MMC host. Any revision or amendment of NAND is invisible to the host as the embedded MMC controller insulates NAND technology from the host. This leads to faster product development as well as faster times to market. The embedded flash mangement software or FTL(Flash Transition Layer) of e·MMC manages Wear Leveling, Bad Block Management and ECC. The FTL supports all features of the Samsung NAND flash and achieves optimal performance. ## 1.0 PRODUCT LIST [Table 1] Product List | Capacities | e⋅MMC Part ID | NAND Flash Type | User Density (%) | Power System | Package size | Pin Configuration | |------------|--------------------|-----------------|------------------|--|-----------------------|-------------------| | 4 GB | KLM4G1YE4C-B0020YB | 32Gb TLC x 1 | 92.19% | - Interface power : VDD (1.70V ~ 1.95V or 2.7V ~ 3.6V) - Memory power : VDDF (2.7V ~ 3.6V) | 11.5mm x 13mm x 1.0mm | 153FBGA | ## 2.0 KEY FEATURES - embedded MultiMediaCard System Specification Ver. 4.41 compatible. Detail description is referenced by JEDEC Standard - SAMSUNG e·MMC supports below special features which are defined in JEDEC - High Priority Interrupt scheme is supported - Background operation is supported. - Full backward compatibility with previous MultiMediaCard system specification (1bit data bus, multi-e·MMC systems) - Data bus sidth :1bit(Default), 4bit and 8bit - MMC I/F Clock Frequency: 0 ~ 52MHz MMC I/F Boot Frequency: 0 ~ 52MHz - Dual Data Rate mode is supported - \bullet Temperature : Operation (-25°C ~ 85°C), Storage without operation (-40°C ~ 85°C) - Power : Interface power \rightarrow VDD (1.70V \sim 1.95V or 2.7V \sim 3.6V) , Memory power \rightarrow VDDF(2.7V \sim 3.6V) ## 3.0 PACKAGE CONFIGURATIONS ## 3.1 153 Ball Pin Configuration [Table 2] 153 Ball Information | Pin NO | Name | |--------|------| | A3 | DAT0 | | A4 | DAT1 | | A5 | DAT2 | | B2 | DAT3 | | В3 | DAT4 | | B4 | DAT5 | | B5 | DAT6 | | B6 | DAT7 | | K5 | RSTN | | C6 | VDD | | M4 | VDD | | N4 | VDD | | P3 | VDD | | P5 | VDD | | E6 | VDDF | | F5 | VDDF | | J10 | VDDF | | K9 | VDDF | | C2 | VDDI | | M5 | CMD | | M6 | CLK | | C4 | VSS | | E7 | VSS | | G5 | VSS | | H10 | VSS | | K8 | VSS | | N2 | VSS | | N5 | VSS | | P4 | VSS | | P6 | VSS | | | | Figure 1. 153-FBGA #### 3.1.1 11.5mm x 13mm x 1.0mm Package Dimension Figure 2. 11.5mm x 13mm x 1.0mm Package Dimension ## 3.2 Product Architecture - e·MMC consists of NAND Flash and Controller. VDD is for Controller power and VDDF is for flash power Figure 3. e-MMC Block Diagram ## 4.0 e.MMC 4.41 features #### 4.1 Data Write Host can configure reliability mode to protect existing data per each partition. This relibility mode has to be set before partitioning is completed. This reliability setting only impacts the reliability of the main user area and the general purpose partitions. [Table 3] EXT_CSD value for reliability setting in write operation | Name | Field | Size
(Bytes) | Cell Type | EXT_CSD-slice | Value | |--------------------------------|--------------|-----------------|-----------|---------------|-------| | Data Reliability Configuration | WR_REL_SET | 1 | R/W | [167] | 0x1F | | Data Reliability Supports | WR_REL_PARAM | 1 | R | [166] | 0x05 | Explanation of each field in the upper table is mentioned below [Table 4] Definition of EXT_CSD value for reliability setting | Fields | Definitions | |-----------|--| | | 0x0: All the WR_DATA_REL parameters in the WR_REL_SET registers are read only bits. 0x1: All the WR_DATA_REL parameters in the WR_REL_SET registers are R/W. | | EN_REL_WR | 0x0: The device supports the previous definition of reliable write. 0x1: The device supports the enhanced definition of reliable write | The below table shows each field for WE_REL_SET [Table 5] Description of each field for WE_REL_SET | Name | Field | Bit | Size | Туре | |------------------------------------|-----------------|-----|------|--| | Write Data Reliability (user Area) | WR_DATA_REL_USR | 0 | 1 | R (if HS_CTRL_REL=0) R/W (if HS_CTRL_REL=1) | | Write Data Reliability Partition 1 | WR_DATA_REL_1 | 1 | 1 | R (if HS_CTRL_REL=0) R/W (if HS_CTRL_REL=1) | | Write Data Reliability Partition 2 | WR_DATA_REL_2 | 2 | 1 | R (if HS_CTRL_REL=0) R/W (if HS_CTRL_REL=1) | | Write Data Reliability Partition 3 | WR_DATA_REL_3 | 3 | 1 | R (if HS_CTRL_REL=0) R/W (if HS_CTRL_REL=1) | | Write Data Reliability Partition 4 | WR_DATA_REL_4 | 4 | 1 | R (if HS_CTRL_REL=0)
R/W (if HS_CTRL_REL=1) | | Reserved | - | 7:5 | - | - | ## 4.2 Reliable Write [Table 6] EXT_CSD value for reliable write | Name | Field | Size (Bytes) | Cell Type | CSD-slice | Value | |---------------------------|--------------|--------------|-----------|-----------|-------| | Data Reliability Supports | WR_REL_PARAM | 1 | R | [166] | 0x05 | Reliable write with EN_REL_WR is 0x1 supports atomicity of sector unit. The block size defined by SET_BLOCKLEN (CMD16) is ignored and reliable write is executed as only 512 byte length. There is no limit on the size of the reliable write. [Table 7] EXT_CSD value for reliable write | Name Field | | Size
(Bytes) | Cell Type | CSD-slice | Value | |-----------------------------|--------------|-----------------|-----------|-----------|-------| | Reliable Write Sector Count | REL_WR_SEC_C | 1 | R | [222] | 0x01 | #### KLM4G1YE4C-B0020YB #### 4.3 Secure Trim Secure Trim operation consists of Secure Trim Step1 and Secure Trim Step2. In Secure Trim Step 1 the host defines the range of write blocks that it would like to mark for the secure purge. [Table 8] EXT_CSD value for secure trim | Field | Definitions | Value | |---------------|--|-------| | SEC_TRIM_MULT | Secure Trim Step2 Timeout = 300ms x ERASE_TIMEOUT_MULT x SEC_TRIM_MULT | 0x11 | Area marked by Secure Trim Step1 is shown as EXT_CSD[181](ERASED_MEM_CONT) before Secure Trim Step2 is completed. When Secure Trim Step2 is issued, if there is no data marked by Secure Trim
Step1, Secure Trim Step2 does not work. ## 4.4 High Priority Interrupt High Priority Interrupt is to stop ongoing operation and perform read operation with high priority Command set for High Priority Interrupt operation is the below [Table 9] Command List for High Priority Interrupt | CMD Index | Type | Argument | Resp | Abbreviation | Command Description | |-----------|------|---|------|-------------------|--| | CMD12 | ac | [31:16] – RCA*
[15:1] – stuff bits
[0] – High Priority Interrupt *
*To be used only to send a High
Priority Interrupt | R1b | STOP_TRANSMISSION | If High Priority Interrupt flag is set the device shall interrupt its internal operations in a well defined timing | Interruptible commands by read while write operation are the below. [Table 10] List of Interruptible Command | Commands | Names | Notes | |----------|-----------------------|--| | CMD24 | WRITE SINGLE BLOCK | - | | CMD25 | WRITE MULTIPLE BLOCKS | - | | CMD25 | RELIABLE WRITE | Stopping a reliable write command with 'High Priority Interrupt' flag set turns that command into a reliable write command | | | ERASE | - | | CMD38 | TRIM | - | | CIVID30 | SECURE ERASE | - | | | SECURE TRIM | - | | CMD6 | SWITCH | BACKGROUND OPERATION ONLY | #### [Table 11] EXT_CSD value for HPI | Name | Field | Size(Bytes) | Cell Type | CSD-Slice | Value | |--|---------------------------|-------------|-----------|-----------|-------| | HPI features | HPI_FEATURES | 1 | R | [503] | 0x03 | | Number of correctiy programmed sectors | CORRECTLY_PRG_SECTORS_NUM | 4 | R | [245:242] | 0x00 | | Partition switching timing | PARTITION_SWITCH_TIME | 1 | R | [199] | 0x01 | | Out of interrupt busytiming | OUT_OF_INTERRUPT_TIME | 1 | R | [198] | 0x02 | | HPI management | HPI_MGMT | 1 | R/W/E_P | [161] | 0x00 | # datasheet ### KLM4G1YE4C-B0020YB [Table 12] Definition of EXT_CSD value for HPI | Fields | Definitions | |--------------------------|---| | HPI_FEATURES | Bit 0 means HPI_SUPPORT Bit 0 = 0x0 : High Priority Interrupt mechanism not supported Bit 0 = 0x1 : High Priority Interrupt mechanism supported Bit 1 means HPI_IMPLEMENTATION 0x0 : HPI mechanism implementation based on CMD13 0x1 : HPI mechanism implementation based on CMD12 | | CORRECTLY_PRG_SECTOR_NUM | This field indicates how many 512B sectors were successfully programmed by the last WRITE_MULTIPLEBLOCK command (CMD25). CORRECTLY_PRG_SECTORS_NUM=EXT_CSD[242]*2^0+EXT_CSD[243]*2^8 +EXT_CSD[244]*2^16 + EXT_CSD[245]*2^24 | | PARTITION_SWITCH_TIME | This field indicates the maximum timeout for the SWITCH command (CMD6) when switching partitions by changing PARTITION_ACCESS bits in PARTITION_CONFIG field (EXT_CSD byte [179]). Time is expressed in units of 10 milliseconds | | OUT_OF_INTERRUPT_TIME | This field indicates the maximum timeout to close a command interrupted by HPI - time between the end bit of CMD12 / CMD 13 to the DAT0 release by the device. | | HPI_MGMT | Bit 0 means HPI_EN 0x0 : HPI mechanism not activated by the host 0x1 : HPI mechanism activated by the host | #### KLM4G1YE4C-B0020YB ## 4.5 Background Operation When the host is not being serviced, e·MMC can do internal operation by using "Background Operation" command. In this operation which takes long time to complete can be handled later when host ensure enough idle time (In Back ground operation) Background Operation Sequence is the following [Table 13] Background Operation Sequence | Function | Command | Description | |----------------------------|------------------------------|--| | Background Operation Check | CMD8 Or Card Status Register | If BKOPS_STATUS is not 0 or 6 th bit of card status register is set, there are something to be performed by background operation | | Background Operation Start | CMD6 | Background operation starts by BKOPS_START is set to any value. When background operation is completed BKOPS_STATUS is set to 0 and BKOPS_START is set to 0. | | Background Operation Stop | НРІ | If the background operation is stopped BKOPS_START is set to 0 | #### [Table 14] EXT_CSD value for Background Operation | Name | Field | Size(Bytes) | Cell Type | CSD-Slice | Value | |---|---------------|-------------|-----------|-----------|-------| | Background operations Support | BKOPS_SUPPORT | 1 | R | [502] | 0x01 | | Background operations status | BKOPS_STATUS | 1 | R | [246] | 0x00 | | Manually start background operations | BKOPS_START | 1 | W/E_P | [164] | 0x00 | | Enable background operations hand shake | BKOP_EN | 1 | R/W | [163] | 0x00 | #### [Table 15] Definition of EXT_CSD value for Bakgrourd Operation | Fields | Definitions | |---------------|---| | BKOPS_SUPPORT | '0' means Background operation is not supported '1' means Background operation is supported | | BKOPS_STATUS | '0' means No background work pending '1' means pending background work existing. '2' means pending background work existing & performance being impacted. '3' means pending background work existing & critical | | BKOPS_START | Background operation start while BKOPS_START is set to any value. '0' means Background operation is enabled. | | BKOPS_EN | '0' means host does not support background operation '1' means host use background operation manually | #### [Table 16] Card Status Register for Background Operation | Bits | Identifier | Туре | Det Mode | Value | Description | Clear Cond | |------|--------------|------|----------|----------------------------------|--|------------| | 6 | URGENT_BKOPS | S | R | "0" = Not Urgent
"1" = Urgent | If set, device needs to perform background operations urgently. Host can check EXT_CSD field BKOPS_STATUS for the detailed level (in case of BKOPS_STATUS is 2 or 3) | А | ## 5.0 Technical Notes ## 5.1 S/W Agorithm #### 5.1.1 Partition Management The device initially consists of two Boot Partitions and RPMB Partition and User Data Area. The User Data Area can be divided into four General Purpose Area Partitions and User Data Area partition. Each of the General Purpose Area partitions and a section of User Data Area partition can be configured as enhanced partition. #### 5.1.1.1 Boot Area Partition and RPMB Area Partition Boot Partition size & RPMB Partition Size are set by the following command sequence : [Table 17] Setting sequence of Boot Area Partition size and RPMB Area Partition size | Function | Command | Description | |----------------------------|------------------------|--| | Partition Size Change Mode | CMD62(0xEFAC62EC) | Enter the Partition Size Change Mode | | Partition Size Set Mode | CMD62(0x00CBAEA7) | Partition Size setting mode | | Set Boot Partition Size | CMD62(BOOT_SIZE_MULTI) | Boot Partition Size value | | Set RPMB Partition Size | CMD62(RPMB_SIZE_MULTI) | RPMB Partition Size value F/W Re-Partition is executed in this step. | | Power Cycle | <u>.</u> | • | Boot partition size is calculated as (128KB * BOOT_SIZE_MULTI) The size of Boot Area Partition 1 and 2 can not be set independently. It is set as same value. RPMB partition size is calculated as ($128KB * RPMB_SIZE_MULTI$). In RPMB partition, CMD 0, 6, 8, 12, 13, 15, 18, 23, 25 are admitted. Access Size of RPMB partition is defined as the below: [Table 18] REL_WR_SEC_C value for write operation on RPMB partition | REL_WR_SEC_C | Description | | |------------------|--|--| | REL_WR_SEC_C = 1 | Access sizes 256B and 512B supported to RPMB partition | | | REL_WR_SEC_C > 1 | Access sizes up to REL_WR_SEC_C * 512B supported to RPMB partition with 256B granularity | | Any undefined set of parameters or sequence of commands results in failure access. If the failure is in data programming case, the data is not programmed. And if the failure occurs in data read case, the read data is '0x00'. ## 5.1.1.2 Enhanced Partition (Area) SAMSUNG e·MMC adopts Enhanced User Data Area as SLC Mode. Therefore when master adopts some portion as enhanced user data area in User Data Area, that area occupies double size of original set up size. (ex> if master set 1MB for enhanced mode, total 2MB user data area is needed to generate 1MB enhanced area) Max Enhanced User Data Area size is defined as (MAX_ENH_SIZE_MULT x HC_WP_GRP_SIZE x HC_ERASE_GRP_SIZE x 512kBytes) #### 5.1.2 Write protect management In order to allow the host to protect data against erase or write, the device shall support write protect commands. #### 5.1.2.1 User Area Write Protection TMP_WRITE_PROTECT (CSD[12]) and PERM_WRITE_PROTECT(CSD[13]) registers allow the host to apply write protection to whole device including Boot Partition, RPMB Partition and User Area. [Table 19] whole device write protect priority | Class | Setting |
-------------------------|-----------------------------| | Permanent write protect | SET : One time programmable | | | CLR : Not available | | Temporary write protect | SET : Multiple programmable | | Temporary write protect | CLR : Multiple programmable | USER_WP (EXT_CSD[171]) register allows the host to apply write protection to all the partitions in the user area. [Table 20] User area write protect priority | Class | Setting | |--------------------------|---| | Permanent write protect | SET : One time programmable | | r ermanent write protect | CLR : Not available | | Power-on write protect | SET : One time programmable on power-on | | | CLR : After power reset | | Temporary write protect | SET : Multiple programmable | | remporary write protect | CLR : Multiple programmable | The host has the ability to check the write protection status of segments by using the SEND_WRITE_PROT_TYPE command (CMD31). When full card protection is enabled all the segments will be shown as having permanent protection. #### 5.1.2.2 Boot Partition Write Protection BOOT_WP (EXT_CSD [173]) register allows the host to apply write protection to Boot Area Partitions. [Table 21] Boot area write protect priority | Class | Setting | |-------------------------|---| | Permanent write protect | SET : One time programmable | | | CLR : Not available | | Power-on write protect | SET : One time programmable on power-on | | | CLR : After power reset | An attempt to set both the disable and enable bit for a given protection mode (permanent or power-on) in a single switch command will have no impact and switch error occurs. Setting both B_PERM_WP_EN and B_PWR_WP_EN will result in the boot area being permanently protected. #### 5.1.3 Boot operation Device supports not only boot mode but also alternative boot mode. Device supports high speed timing and dual data rate during boot Figure 4. MultiMediaCard state diagram (boot mode) Figure 5. MultiMediaCard state diagram (alternative boot mode) #### [Table 22] Boot ack, boot data and initialization Time | Timing Factor | Value | |---------------------------------------|----------| | (1) Boot ACK Time | < 50 ms | | (2) Boot Data Time | < 60 ms | | (3) Initialization Time ¹⁾ | < 3 secs | #### NOTE: 1) This initialization time includes partition setting, Please refer to INI_TIMEOUT_AP in 6.4 Extended CSD Register. Normal initialization time (without partition setting) is completed within 1s (300ms for 4GB) ### 5.1.4 User Density Total User Density depends on device type. For example, 32MB in the SLC Mode requires 96MB in TLC. This results in decreasing of user density #### [Table 23] Capacity according to partition | | Boot partition 1 | Boot partition 2 | RPMB | |------|------------------|------------------|---------| | Min. | 2,048KB | 2,048KB | 128KB | | Max. | 4,096KB | 4,096KB | 4,096KB | #### [Table 24] Maximum Enhanced Partition Size | Device | Max. Enhanced Partition Size | |--------|------------------------------| | 4 GB | 1,319,108,608 Bytes | ### [Table 25] User Density Size | Device | User Density Size | |--------|---------------------| | 4 GB | 3,959,422,976 Bytes | #### KLM4G1YE4C-B0020YB #### 5.1.5 Auto Power Saving Mode If host does not issue any command during a certain duration (1ms), after previously issued command is completed, the device enters "Power Saving mode" to reduce power consumption. At this time, commands arriving at the device while it is in power saving mode will be serviced in normal fashion [Table 26] Auto Power Saving Mode enter and exit | Mode | Enter Condition | Escape Condition | |------------------------|---|----------------------------| | Auto Power Saving Mode | When previous operation which came from Host is completed and no command is issued during a certain time. | If Host issues any command | #### [Table 27] Auto Power Saving Mode and Sleep Mode | | Auto Power Saving Mode | Sleep Mode | |----------------|------------------------|------------| | NAND Power | ON | OFF | | GotoSleep Time | < 1ms | < 1ms | #### 5.1.6 Performance [Table 28] Performance | Density | Sequential Read (MB/s) | Sequential Write (MB/s) | |---------|------------------------|-------------------------| | 4 GB | 71 | 7 | ^{*} Test Condition: Bus width x8, 50MHz DDR, 512KB data transfer, w/o file system overhead, measured on Samsung's internal board ## **6.0 REGISTER VALUE** ## 6.1 OCR Register The 32-bit operation conditions register stores the VDD voltage profile of the e·MMC. In addition, this register includes a status information bit. This status bit is set if the e·MMC power up procedure has been finished. The OCR register shall be implemented by all e·MMCs. [Table 29] OCR Register | OCR bit | VDD voltage window ² | Register Value | | | | | |---------|---|---|--|--|--|--| | [6:0] | Reserved | 00 00000b | | | | | | [7] | 1.70 - 1.95 | 1b | | | | | | [14:8] | 2.0-2.6 | 000 0000b | | | | | | [23:15] | 2.7-3.6 | 1 1111 1111b | | | | | | [28:24] | Reserved | 0 0000b | | | | | | [30:29] | Access Mode | 00b (byte mode) 10b (sector mode) -[*Higher than 2GB only] | | | | | | [31] | e·MMC power up status bit (busy) ¹ | | | | | | #### NOTE: - 1) This bit is set to LOW if the e-MMC has not finished the power up routine - 2) The voltage for internal flash memory(VDDF) should be 2.7-3.6v regardless of OCR Register value. ## 6.2 CID Register [Table 30] CID Register | .as.e ee] e.z . tegiete. | | | | | | |--------------------------|-------|-------|-----------|------------------------|--| | Name | Field | Width | CID-slice | CID Value | | | Manufacturer ID | MID | 8 | [127:120] | 0x15 | | | Reserved | | 6 | [119:114] | | | | Card/BGA | CBX | 2 | [113:112] | 01 | | | OEM/Application ID | OID | 8 | [111:104] | 1 | | | Product name | PNM | 48 | [103:56] | See Product name table | | | Product revision | PRV | 8 | [55:48] | 2 | | | Product serial number | PSN | 32 | [47:16] | 3 | | | Manufacturing date | MDT | 8 | [15:8] | 4 | | | CRC7 checksum | CRC | 7 | [7:1] | 5 | | | not used, always '1' | - | 1 | [0:0] | | | #### NOTE: - 1),4),5) description are same as e.MMC JEDEC standard - 2) PRV is composed of the revision count of controller and the revision count of F/W patch - 3) 32-bit unsigned binary integer. (Random Number) ### 6.2.1 Product name table (In CID Register) [Table 31] Product name | Part Number | Density | Product Name in CID Register (PNM) | |--------------------|---------|------------------------------------| | KLM4G1YE4C-B0020YB | 4 GB | 0 x 4D3447315943 | ## 6.3 CSD Register The Card-Specific Data register provides information on how to access the e-MMC contents. The CSD defines the data format, error correction type, maximum data access time, data transfer speed, whether the DSR register can be used etc. The programmable part of the register (entries marked by W or E, see below) can be changed by CMD27. The type of the entries in the table below is coded as follows: R : Read only W: One time programmable and not readable. R/W: One time programmable and readable. W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and not readable. R/W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and readable. R/W/C_P: Writable after value cleared by power failure and HW/ rest assertion (the value not cleared by CMD0 reset) and readable. R/W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and readable. W/E/_P: Multiple wtitable with value reset after power failure, H/W reset assertion and any CMD0 reset and not readable. #### [Table 32] CSD Register | Name | Field Wi | | Cell | CSD-slice | CSD Value | | |--|--------------------|-------|-------|-----------|-----------|--| | Name | i iciu | Width | Туре | OOD-SIICE | 4GB | | | CSD structure | CSD_STRUCTURE | 2 | R | [127:126] | 0x03 | | | System specification version | SPEC_VERS | 4 | R | [125:122] | 0x04 | | | Reserved | - | 2 | R | [121:120] | - | | | Data read access-time 1 | TAAC | 8 | R | [119:112] | 0x27 | | | Data read access-time 2 in CLK cycles (NSAC*100) | NSAC | 8 | R | [111:104] | 0x01 | | | Max. bus clock frequency | TRAN_SPEED | 8 | R | [103:96] | 0x32 | | | Card command classes | CCC | 12 | R | [95:84] | 0xF5 | | | Max. read data block length | READ_BL_LEN | 4 | R | [83:80] | 0x09 | | | Partial blocks for read allowed | READ_BL_PARTIAL | 1 | R | [79:79] | 0x00 | | | Write block misalignment | WRITE_BLK_MISALIGN | 1 | R | [78:78] | 0x00 | | | Read block misalignment | READ_BLK_MISALIGN | 1 | R | [77:77] | 0x00 | | | DSR implemented | DSR_IMP | 1 | R | [76:76] | 0x00 | | | Reserved | - | 2 | R | [75:74] | - | | | Card size | C_SIZE | 12 | R | [73:62] | 0xFFF | | | Max. read current @ VDD min | VDD_R_CURR_MIN | 3 | R | [61:59] | 0x06 | | | Max. read current @ VDD max | VDD_R_CURR_MAX | 3 | R | [58:56] | 0x06 | | | Max. write current @ VDD min | VDD_W_CURR_MIN | 3 | R | [55:53] | 0x06 | | | Max. write current @ VDD max | VDD_W_CURR_MAX | 3 | R | [52:50] | 0x06 | | | Card size multiplier | C_SIZE_MULT | 3 | R | [49:47] | 0x07 | | | Erase group size | ERASE_GRP_SIZE | 5 | R | [46:42] | 0x1F | | | Erase group size multiplier | ERASE_GRP_MULT | 5 | R | [41:37] | 0x1F | | | Write protect group size | WP_GRP_SIZE | 5 | R | [36:32] | 0x01 | | | Write protect group enable | WP_GRP_ENABLE | 1 | R | [31:31] | 0x01 | | | Manufacturer default ECC | DEFAULT_ECC | 2 | R | [30:29] | 0x00 | | | Write speed factor | R2W_FACTOR | 3 | R | [28:26] | 0x03 | | | Max. write data block length | WRITE_BL_LEN | 4 | R | [25:22] | 0x09 | | | Partial blocks for write allowed | WRITE_BL_PARTIAL | 1 | R |
[21:21] | 0x00 | | | Reserved | - | 4 | R | [20:17] | - | | | Content protection application | CONTENT_PROT_APP | 1 | R | [16:16] | 0x00 | | | File format group | FILE_FORMAT_GRP | 1 | R/W | [15:15] | 0x00 | | | Copy flag (OTP) | COPY | 1 | R/W | [14:14] | 0x01 | | | Permanent write protection | PERM_WRITE_PROTECT | 1 | R/W | [13:13] | 0x00 | | | Temporary write protection | TMP_WRITE_PROTECT | 1 | R/W/E | [12:12] | 0x00 | | | File format | FILE_FORMAT | 2 | R/W | [11:10] | 0x00 | | | ECC code | ECC | 2 | R/W/E | [9:8] | 0x00 | | | CRC | CRC | 7 | R/W/E | [7:1] | - | | | Not used, always '1' | - | 1 | _ | [0:0] | - | | IF THERE IS ANY OTHER OPERATION TO IMPLEMENT IN ADDITION TO SPECIFICATION IN THE DATASHEET OR JEDEC STANDARD, PLEASE CONTACT EACH BRANCH OFFICE OR HEADQUARTERS OF SAMSUNG ELECTRONICS. ## 6.4 Extended CSD Register The Extended CSD register defines the e·MMC properties and selected modes. It is 512 bytes long. The most significant 320 bytes are the Properties segment, which defines the e-MMC capabilities and cannot be modified by the host. The lower 192 bytes are the Modes segment, which defines the configuration the e-MMC is working in. These modes can be changed by the host by means of the SWITCH command. R: Read only W: One time programmable and not readable. R/W: One time programmable and readable. W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and not readable. R/W/E: Multiple writable with value kept after power failure, H/W reset assertion and any CMD0 reset and readable. R/W/C_P: Writable after value cleared by power failure and HW/ rest assertion (the value not cleared by CMD0 reset) and readable. R/W/E_P: Multiple writable with value reset after power failure, H/W reset assertion and any CMD0 reset and readable. W/E/ P: Multiple with value reset after power failure, H/W reset assertion and any CMD0 reset and not readable #### [Table 33] Extended CSD Register | Name | Field | Size | Cell | CSD-slice | CSD Value | |--|------------------------------|---------|------|-----------|------------| | Name | rieid | (Bytes) | Туре | CSD-slice | 4GB | | | Properties Segment | | | | | | Reserved ¹ | | 7 | - | [511:505] | - | | Supported Command Sets | S_CMD_SET | 1 | R | [504] | 0x01 | | HPI features | HPI_FEATURES | 1 | R | [503] | 0x03 | | Background operations support | BKOPS_SUPPORT | 1 | R | [502] | 0x01 | | Reserved ¹ | | 255 | - | [501:248] | - | | Power off notification(long) timeout | POWER_OFF_LONG_TIME | 1 | R | [247] | Don't care | | Background operations status | BKOPS_STATUS | 1 | R | [246] | 0x00 | | Number of correctly programmed sectors | CORRECTLY_PRG_SECTORS
NUM | 4 | R | [245:242] | 0x00 | | I st initialization time after partitioning | INI_TIMEOUT_AP | 1 | R | [241] | 0x1E | | Reserved ¹ | | 1 | - | [240] | - | | Power class for 52MHz, DDR at 3.6V | PWR_CL_DDR_52_360 | 1 | R | [239] | 0x00 | | Power class for 52MHz, DDR at 1.95V | PWR_CL_DDR_52_195 | 1 | R | [238] | 0x00 | | Reserved ¹ | | 2 | - | [237:236] | - | | Minimum Write Performance for 8 bit at 52MHz in DDR mode | MIN_PERF_DDR_W_8_52 | 1 | R | [235] | 0x00 | | Minimum Read Performance for 8 bit at 52MHz in DDR mode | MIN_PERF_DDR_R_8_52 | 1 | R | [234] | 0x00 | | Reserved ¹ | | 1 | - | [233] | - | | TRIM Multiplier | TRIM_MULT | 1 | R | [232] | 0x02 | | Secure Feature support | SEC_FEATURE_SUPPORT | 1 | R | [231] | 0x15 | | Secure Erase Multiplier | SEC_ERASE_MULT | 1 | R | [230] | 0x1B | | Secure TRIM Multiplier | SEC_TRIM_MULT | 1 | R | [229] | 0x11 | | Boot information | BOOT_INFO | 1 | R | [228] | 0x07 | | Reserved ¹ | | 1 | - | [227] | - | | Boot partition size | BOOT_SIZE_MULTI | 1 | R | [226] | 0x10 | | Access size | ACC_SIZE | 1 | R | [225] | 0x05 | | High-capacity erase unit size | HC_ERASE_GRP_SIZE | 1 | R | [224] | 0x01 | | High-capacity erase timeout | ERASE_TIMEOUT_MULT | 1 | R | [223] | 0x01 | | Reliable write sector count | REL_WR_SEC_C | 1 | R | [222] | 0x01 | | High-capacity write protect group size | HC_WP_GRP_SIZE | 1 | R | [221] | 0x02 | | Sleep current (VDDF) | S_C_VDDF | 1 | R | [220] | 0x07 | | Sleep current (VDD) | S_C_VDD | 1 | R | [219] | 0x07 | | Reserved ¹ | | 1 | - | [218] | - | IF THERE IS ANY OTHER OPERATION TO IMPLEMENT IN ADDITION TO SPECIFICATION IN THE DATASHEET OR JEDEC STANDARD, PLEASE CONTACT EACH BRANCH OFFICE OR HEADQUARTERS OF SAMSUNG ELECTRONICS. # datasheet ### KLM4G1YE4C-B0020YB | Sleep/awake timeout | S_A_TIMEOUT | 1 | R | [217] | 0x11 | |--|-----------------------|---|-------------------|-----------|----------| | Reserved ¹ | | 1 | - | [216] | - | | Sector Count | SEC_COUNT | 4 | R | [215:212] | 0x760000 | | Reserved ¹ | | 1 | - | [211] | - | | Minimum Write Performance for 8bit @52MHz | MIN_PERF_W_8_52 | 1 | R | [210] | 0x00 | | Minimum Read Performance for 8bit @52MHz | MIN_PERF_R_8_52 | 1 | R | [209] | 0x00 | | Minimum Write Performance for 8bit @26MHz /4bit @52MHz | MIN_PERF_W_8_26_4_52 | 1 | R | [208] | 0x00 | | Minimum Read Performance for 8bit @26MHz /4bit @52MHz | MIN_PERF_R_8_26_4_52 | 1 | R | [207] | 0x00 | | Minimum Write Performance for 4bit @26MHz | MIN_PERF_W_4_26 | 1 | R | [206] | 0x00 | | Minimum Read Performance for 4bit @26MHz | MIN_PERF_R_4_26 | 1 | R | [205] | 0x00 | | Reserved ¹ | | 1 | - | [204] | - | | Power Class for 26MHz @ 3.6V | PWR_CL_26_360 | 1 | R | [203] | 0x00 | | Power Class for 52MHz @ 3.6V | PWR_CL_52_360 | 1 | R | [202] | 0x00 | | Power Class for 26MHz @ 1.95V | PWR_CL_26_195 | 1 | R | [201] | 0x00 | | Power Class for 52MHz @ 1.95V | PWR_CL_52_195 | 1 | R | [200] | 0x00 | | Partition switching timing | PARTITION_SWITCH_TIME | 1 | R | [199] | 0x01 | | Out-of-interrupt busy timing | OUT_OF_INTERRUPT_TIME | 1 | R | [198] | 0x02 | | Reserved ¹ | | 1 | - | [197] | - | | Card Type | CARD_TYPE | 1 | R | [196] | 0x07 | | Reserved ¹ | | 1 | - | [195] | - | | CSD Structure Version | CSD_STRUCTURE | 1 | R | [194] | 0x02 | | Reserved ¹ | | 1 | - | [193] | - | | Extended CSD Revision | EXT_CSD_REV | 1 | R | [192] | 0x05 | | | Modes Segment | | | | | | Command Set | CMD_SET | 1 | R/W/E_P | [191] | 0x00 | | Reserved ¹ | | 1 | - | [190] | - | | Command Set Revision | CMD_SET_REV | 1 | R | [189] | 0x00 | | Reserved ¹ | | 1 | - | [188] | - | | Power Class | POWER_CLASS | 1 | R/W/E_P | [187] | 0x00 | | Reserved ¹ | | 1 | - | [186] | - | | High Speed Interface Timing | HS_TIMING | 1 | R/W/E_P | [185] | 0x00 | | Reserved ¹ | | 1 | - | [184] | - | | Bus Width Mode | BUS_WIDTH | 1 | W/E_P | [183] | 0x00 | | Reserved ¹ | | 1 | - | [182] | - | | Erased Memory Content | ERASED_MEM_CONT | 1 | R | [181] | 0x00 | | Reserved ¹ | | 1 | - | [180] | - | | Partition configurationn | PARTITION_CONFIG | 1 | R/W/E&
R/W/E_P | [179] | 0x00 | | Boot config proteetion | BOOT_CONFIG_PRPT | 1 | R/W &
R/W/C_P | [178] | 0x00 | | Boot bus width1 | BOOT_BUS_WIDTH | 1 | R/W/E | [177] | 0x00 | | Reserved ¹ | | 1 | - | [176] | - | | High-density erase group definition | ERASE_GROUP_DEF | 1 | R/W/E_P | [175] | 0x00 | | Reserved ¹ | • | 1 | - | [174] | - | | Boot area write proection register | BOOT_WP | 1 | R/W &
R/W/C_P | [173] | 0x00 | | | | | | | | IF THERE IS ANY OTHER OPERATION TO IMPLEMENT IN ADDITION TO SPECIFICATION IN THE DATASHEET OR JEDEC STANDARD, PLEASE CONTACT EACH BRANCH OFFICE OR HEADQUARTERS OF SAMSUNG ELECTRONICS. # datasheet ### KLM4G1YE4C-B0020YB | User area write protection register | USER_WP | 1 | R/W,
R/W/
C_P&
R/W/E_P | [171] | 0x00 | |--|---------------------------------------|----|---------------------------------|-----------|------------| | Reserved ¹ | | 1 | - | [170] | - | | FW configuration | FW_CONFIG | 1 | R/W | [169] | 0x00 | | RPMB Size | RPMB_SIZE_MULT | 1 | R | [168] | 0x01 | | Write reliability setting register | WR_REL_SET | 1 | R/W | [167] | 0x1F | | Write reliability parameter register | WR_REL_PARAM | 1 | R | [166] | 0x05 | | Reserved ¹ | • | 1 | - | [165] | - | | Manually start background operations | BKOPS_START | 1 | W/E_P | [164] | 0x00 | | Enable background operations handshake | BKOPS_EN | 1 | R/W | [163] | 0x00 | | H/W reset function | RST_n_FUNCTION | 1 | R/W | [162] | 0x00 | | HPI management | HPI_MGMT | 1 | R/W/E_P | [161] | 0x00 | | Partitoning support | RARTITIONING_SUPPORT | 1 | R | [160] | 0x03 | | Max Enhanced Area Size | MAX_ENH_SIZE_MULT | 3 | R | [159:157] | 0x4EA | | Partitions attribute | PARTITIONS_ATTRIBUTE | 1 | R/W | [156] | 0x00 | | Paritioning Setting | PARTITION_SETTING_COM-
PLETED | 1 | R/W | [155] | 0x00 | | General Purpose Partition Size | GP_SIZE_MULT | 12 | R/W | [154:143] | 0x00 | | Enhanced User Data Area Size | ENH_SIZE_MULT | 3 | R/W | [142:140] | 0x00 | | Enhanced User Data Start Address | ENH_START_ADDR | 4 | R/W | [139:136] | 0x00 | | Reserved ¹ | • | 1 | - | [135] | - | | Bad Block Management mode | SEC_BAD_BLK_MGMT | 1 | R/W | [134] | 0x00 | | Reserved ¹ | • | 6 | - | [133:128] | - | | Vendor Config | VENDOR_CONFIG | 60 | - | [127:68] | Don't care | | Vendor Config
(Auto Background Operation) | AUTO_BKOPS | 1 | R/W/E | [67] | Don't care | | Vendor Config
(Aligned Optimal Trim/Discard Size) | ALIGNED_OPTIMAL_TRIM_
DISCARD_SIZE | 1 | R | [66] | 0x08 | | Vendor Config
(Optimized Features) | OPTIMIZED_FEATURES | 2 | R | [65:64] | 0x03 | | Reserved ¹ | • | 29 | - | [63:35] | - | | Power Off Notification | POWER_OFF_NOTIFICATION | 1 | R/W/E_P | [34] | Don't care | | Reserved ¹ | 1 | 34 | - | [33:0] | - | NOTE: 1) Reserved bits should be read as "0." ## 7.0 AC PARAMETER ## 7.1 Time Parameter [Table 34] Time Parameter | Timir | ng Paramter | Max. Value | Unit | |--|---------------------------------------|----------------------|------| | Initialization Time (tINIT) | Normal ¹⁾ | 1
(300ms for 4GB) | ms | | , , , | After partition
setting ²⁾ | 3 | s | | Read Timeout | | 100 | ms | | Write Timeout | | 350 | ms | | Erase Timeout | | 15 | ms | | Force Erase Timeout | | 3 | min | | Secure Erase Timeout | | 8 | S | | Secure Trim step1 Timeout | | 5 | S | | Secure Trim step2 Timeout | | 3 | S | | Trim Timeout ³⁾ | | 600 | ms | | Partition Switching Timeout (after Init) | | 100 | us | | Discard Timeout | | 15 | ms | #### NOTE: - 1) Normal Initialization Time without partition setting 2) Initialization Time after partition setting, refer to INI_TIMEOUT_AP in 6.4 EXT_CSD register 3) If 8KB Size and Address are aligned, Max. Timeout value is 300ms - 4) Power Off Notification is not implemented for 4,8GB Products ## 7.2 Bus Timing Parameter Data must always be sampled on the rising edge of the clock. Figure 6. Bus signal levels #### [Table 35] Default (under 26MHz) | Parameter | Symbol | Min | Max | Unit | Remark ¹ | | | | | |--------------------------------------|--|---------------|---------|------|-------------------------|--|--|--|--| | Clock C | Clock CLK(All values are referred to $\min(V_{IH})$ and $\max(V_{IL})^2$ | | | | | | | | | | Clock frequency Data Transfer Mode3 | fPP | 04 | 26 | MHz | CL <= 30 pF | | | | | | Clock frequency Identification Mode | f _{OD} | 0 4 | 400 | kHz | | | | | | | Clock low time | t _{WL} | 10 | | ns | C _L <= 30 pF | | | | | | Clock high time | t _{WH} | 10 | | | C _L <= 30 pF | | | | | | Clock rise time ⁵ | t _{TLH} | | 10 | ns | C _L <= 30 pF | | | | | | Clock fall time | t _{THL} | | 10 | ns | C _L <= 30 pF | | | | | | | Inputs CMD, DA | T (referenced | to CLK) | | | | | | | | Input set-up time | t _{ISU} | 3 | | ns | C _L <= 30 pF | | | | | | Input hold time | t _{IH} | 3 | | ns | C _L <= 30 pF | | | | | | Outputs CMD, DAT (referenced to CLK) | | | | | | | | | | | Output hold time | t _{OH} | 8.3 | | ns | CL <= 30 pF | | | | | | Output set-up time | t _{OSU} | 11.7 | | ns | CL <= 30 pF | | | | | #### NOTE: - 1) Device must always start with the backward-compatible interface timing mode can be switched to high-speed interface timing by the host sending the SWITCH command (CMD6) with the argument for high-speed interface select. - 2) CLK timing is measured at 50% of VDD. - 3) For compatibility with cards that suport the v4.2 standard or earlier verison, host should not use>26MHz before switching to high-speed interface timing. - 4) Frequency is periodically sampled and is not 100% tested. - 5) CLK rise and fall times are measured by $min(V_{IH})$ and $max(V_{IL})$. #### [Table 36] High-Speed Mode | Parameter | Symbol | Min | Max | Unit | Remark | |---|----------------------|-----------------------------|--|------|---| | Clock CLF | (All values are refe | rred to min(V _{IH} |) and max(V _{IL}) ¹ | | • | | Clock frequency Data Transfer Mode ² | f _{PP} | 03 | 52 ⁴⁾ | MHz | C _L <= 30 pF
Tolerance: +100KHz | | Clock frequency Identification Mode | f _{OD} | 0 ³ | 400 | kHz | Tolerance: +20KHz | | Clock low time | t _{WL} | 6.5 | | ns | C _L <= 30 pF | | Clock High time | t _{WH} | 6.5 | | ns | C _L <= 30 pF | | Clock rise time ⁵ | t _{TLH} | | 3 | ns | C _L <= 30 pF | | Clock fall time | t _{THL} | | 3 | ns | C _L <= 30 pF | | | Inputs CMD, DAT | (referenced to 0 | CLK) | 1 | • | | Input set-up time | t _{ISU} | 3 | | ns | C _L <= 30 pF | | Input hold time | t _{IH} | 3 | | ns | C _L <= 30 pF | | | Outputs CMD, DAT | (referenced to | CLK) | | | | Output Delay time during Data Transfer Mode | t _{ODLY} | | 13.7 | ns | CL <= 30 pF | | Output hold time | t _{OH} | 2.5 | | | C _L <= 30 pF | | Signal rise time | t _{RISE} | | 3 | ns | C _L <= 30 pF | | Signal fall time | t _{FALL} | | 3 | ns | C _L <= 30 pF | #### NOTE: - 1) CLK timing is measured at 50% of VDD. - 2) A MultiMediaCard shall support the full frequency range from 0-26MHz, or 0-52MHz - 3) Frequency is periodically sampled and is not 100% tested. - 4) Device can operate as high-speed card interface timing at 26MHz clock frequency. - 5) CLK rise and fall times are measured by min(V_{IH}) and max(V_{IL}).6) Inputs CMD, DAT rise and fall times are measured by min(V_{IH}) and max(V_{IL}), and outputs CMD, DAT rise and fall times are measured by min(V_{OH}) and max(V_{OL}). ## $7.3~{\rm Bus}$ timing for DAT signals during $2x~{\rm data}$ rate operation These timings applies to the DAT[7:0] signals only when the device is configured for dual data mode operation. In this dual data mode, the DAT signals operates synchronously of both the rising and the falling edges of CLK. The CMD signal still operates synchronously of the rising edge of CLK and there fore it complies with the bus timing specified in chapter 7.2, Therefore there is no timing change for the CMD signal Figure 7. Timing diagram: data input/output in dual data rate mode ### 7.3.1 Dual data rate interface timings [Table 37] High-speed dual rate interface timing | Parameter | Symbol | Min | Max. | Unit | Remark ¹ | | | | |---|--|------------------|-----------|------|------------------------------|--|--|--| | Input CLK ¹ | | | | | | | | | | Clock duty cycle | | 45 | 55 | % | Includes jitter, phase noise | | | | | | Input DAT (referenced to CLK-DDR mode) | | | | | | | | | Input set-up time | tlSUddr | 2.5 | | ns | CL ≤ 20 pF | | | | | Input hold time | tlHddr | 2.5 | | ns | CL ≤ 20 pF | | | | | | Output DAT (refe | erenced to CLK-I | DDR mode) | | | | | | | Output delay time during data transfer | tODLYddr | 1.5 | 7 | ns | CL ≤ 20 pF | | | | | Signal rise time (all signals) ² | tRISE | | 2 | ns | CL ≤ 20 pF | | | | | Signal fall time (all signals) | tFALL | | 2 | ns | CL ≤ 20 pF | | | | #### NOTE: 1) CLK timing is measuted at 50% of VDD 2) Inputs CMD, DAT rise and fall times are measured by min (V_{IH}) and max (V_{IL}) , and outputs CMD,DATrise and fall times measured by min (V_{OH}) and max (V_{OL}) ## 7.4 Bus signal levels As the bus can be supplied with a variable supply voltage, all signal levels are related to the supply voltage. #### 7.4.1 Open-drain mode bus signal level [Table 38] Open-drain bus signal level | Parameter | Symbol | Min | Max. | Unit | Conditions | |---------------------|-----------------|-----------------------|------|------|------------------------| | Output HIGH voltage | V _{OH} | V _{DD} - 0.2 | | V | Note 1) | | Output LOW voltage | V _{OL} | | 0.3 | V | I _{OL} = 2 mA | #### Note: The input levels are identical with the push-pull mode bus signal levels. #### 7.4.2 Push-pull mode bus signal level.high-voltage MultiMediaCard To meet the requirements of the JEDEC standard JESD8C.01, the card input and output voltages shall be within the following specified ranges for any V_{DD} of the allowed voltage range: [Table 39] Push-pull signal level.high-voltage MultiMediaCard | Parameter | Symbol | Min | Max. | Unit | Conditions | |---------------------|-----------------|-----------------------|-----------------------|------|---| | Output HIGH voltage | V _{OH} | 0.75*V _{DD} | | V | I _{OH} = -100 uA@V _{DD} min | | Output LOW voltage | V _{OL} | | 0.125*V _{DD} | V | I _{OL} = 100 uA@V _{DD} min | | Input HIGH voltage | V _{IH} | 0.625*V _{DD} | V _{DD} + 0.3 | V | | | Input LOW voltage | V _{IL} | V _{SS} - 0.3 | 0.25*V _{DD} | V | | #### 7.4.3 Push-pull mode bus signal level.dual-voltage MultiMediaCard The definition of the I/O signal levels for the Dual voltage MultiMediaCard changes as a function of V_{DD} . - 2.7V 3.6V: Identical to the High Voltage MultiMediaCard (refer to Chapter 7.4.2 on page25 above). - 1.95V 2.7V: Undefined. The card is not operating at this voltage range. - 1.70V 1.95V: Compatible with EIA/JEDEC Standard "EIA/JESD8-7 Normal Range" as defined in the following table. [Table 40] Push-pull signal level—dual-voltage MultiMediaCard | Parameter | Symbol | Min | Max. | Unit | Conditions | |---------------------|-----------------|------------------------------------|------------------------------------|------|------------------------| | Output HIGH voltage | V _{OH} | V _{DD} - 0.45V | | V | I _{OH} = -2mA | | Output LOW voltage | V _{OL} | | 0.45V | V | I _{OL} = 2mA | | Input HIGH voltage | V _{IH} | 0.65*V _{DD} ¹⁾ | V _{DD} + 0.3 | V | | | Input LOW voltage | V _{IL} | V _{SS} - 0.3 | 0.35*V _{DD} ²⁾ | V | | #### NOTE - 1) 0.7*V_{DD} for MMC4.3 and older revisions. - 2) $0.3^{*}V_{DD}$ for MMC4.3 and older revisions. ¹⁾ Because Voh depends on external resistance value (including outside the package), this value does not apply as device specification. Host is responsible to choose the external pull-up and open drain resistance value to meet Voh Min value. ## 8.0 DC PARAMETER ## 8.1 Active Power Consumption during operation [Table 41] Active Power Consumption during operation | Density | NAND Type | CTRL | NAND | Unit | |---------|--------------|------|------|------| | 4 GB | 32Gb TLC x 1 | 100 | 50 | mA | ^{*} Power Measurement conditions: Bus configuration =x8 @52MHz ## 8.2 Standby Power Consumption in auto power saving mode and standby state [Table 42] Standby Power Consumption in auto power saving mode and standby state | Density | NAND Type | СТ | CTRL NAND | | NAND | | |---------|--------------|-----------|-----------|-----------|------|------| | Density | TOTAL TYPE | 25°C(Typ) | 85°C | 25°C(Typ) | 85°C | Unit | | 4 GB | 32Gb TLC x 1 | 100 | 250 | 40 | 85 | uA | #### NOTE: ## 8.3 Sleep Power Consumption in Sleep State [Table 43] Sleep Power Consumption in Sleep State | Density | NAND Type | CTRL | | | | |----------|--------------|-----------|------|-----------------|------| | Delisity | NAME Type | 25°C(Typ) | 85°C | NAND | Unit | | 4 GB | 32Gb TLC x 1 | 100 | 250 | 0 ¹⁾ | uA | #### NOTF: Power Measurement
conditions: Bus configuration =x8, No CLK ## 8.4 Supply Voltage [Table 44] Supply Voltage | Item | Min | Max | Unit | |------|------------|------------|------| | VDD | 1.70 (2.7) | 1.95 (3.6) | V | | VDDF | 2.7 | 3.6 | V | | Vss | -0.5 | 0.5 | V | ## 8.5 Bus Operating Conditions [Table 45] Bus Operating Conditions | Parameter | Min | Max | Unit | |---------------------------|------|------------------------|------| | Peak voltage on all lines | -0.5 | V _{CCQ} + 0.5 | V | | Input Leakage Current | -2 | 2 | μΑ | | Output Leakage Current | -2 | 2 | μΑ | ^{*} The measurement for max RMS current is the average RMS current consumption over a period of 100ms. Power Measurement conditions: Bus configuration =x8, No CLK ^{*}Typical value is measured at Vcc=3.3V, TA=25°C. Not 100% tested. ¹⁾ In auto power saving mode , NAND power can not be turned off .However in sleep mode NAND power can be turned off. If NAND power is alive , NAND power is same with that of the Standby state. ## datasheet ## 8.6 Bus Signal Line Load The total capacitance C_L of each line of the e-MMC bus is the sum of the bus master capacitance C_{HOST} , the bus capacitance C_{BUS} itself and the capacitance C_{DEVICE} of the e-MMC connected to this line: $$C_L = C_{HOST} + C_{BUS} + C_{DEVICE}$$ The sum of the host and bus capacitances should be under 20pF. [Table 46] Bus Signal Line Load | Parameter | Symbol | Min | Тур. | Max | Unit | Remark | |---------------------------------------|------------------|-----|------|-----|------|---------------------------------------| | Pull-up resistance for CMD | R _{CMD} | 4.7 | | 100 | KOhm | to prevent bus floating | | Pull-up resistance for DAT0-DAT7 | R _{DAT} | 10 | | 100 | KOhm | to prevent bus floating | | Internal pull up resistance DAT1-DAT7 | R _{int} | 10 | | 150 | KOhm | to prevent unconnected lines floating | | Single e·MMC capacitance | C _{BGA} | | 7 | 12 | pF | | | Maximum signal line inductance | | | | 16 | nH | f _{PP} <= 52 MHz | ## A. e-MMC Connection Guide This connection guide is an example for customers to adopt e·MMC more easily - This appendix is just guideline for e·MMC connection. This value and schematic can be changed depending on the system environment. - Coupling capacitor should be connected with VDD and VSS as close as possible. - VDDI Capacitor is min 0.1uF - Impedance on CLK match is needed. - SAMSUNG recommends 27Ω for resistance on CLK line. However $0\Omega \sim 47\Omega$ is also available. - ullet If host does not have a plan to use H/W reset, it is not needed to put 50K Ω pull-up resistance on H/W reset line. - SAMSUNG recommends user separate VDD and VDDF power. ## A.1 x8 support Host connection Guide ## A.2 x4 support Host connection Guide